Ecuatie functionala

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Ecuatie functionala

Post by Mateescu Constantin »

Fie \( f: (0,\infty) \rightarrow (0,\infty ) \) o functie neconstanta, care pentru orice \( x,y,z\in (0,\infty) \) satisface relatia:

\( f(x)f(yf(x))f(zf(x+y))=f(x+y+z) \).

Sa se arate ca \( f \) este injectiva si sa se determine toate aceste functii.
Post Reply

Return to “Clasa a X-a”