Aplicatii ale CBS

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Aplicatii ale CBS

Post by Marius Mainea »

In legatura cu problema 2, TST 2/2008 iata alte doua probleme propuse de Bogdan Enescu.

1. Daca \( x_1, x_2, ..., x_n \in \mathbb{R} \), atunci

\( \frac{x_1}{1+x_1^2}+\frac{x_2}{1+x_1^2+x_2^2}+...+\frac{x_n}{1+x_1^2+x_2^2+...+x_n^2}<\sqrt{n} \)

2. Daca \( x_1, x_2, ..., x_n \) sunt numere pozitive, atunci

\( \frac{1}{1+x_1}+\frac{1}{1+x_1+x_2}+...+\frac{1}{1+x_1+x_2+...+x_n}<\sqrt{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}} \)

ONM 2005
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Prima inegalitate este din lista scurta IMO, 2001. A se vedea urmatorul link.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Aceeasi prima inegalitate a fost data la locala in Arges in 2007 :D
Si asta e ciudat ca o problema de nivel OIM este propusa la o locala de matematica.
Last edited by Laurentiu Tucaa on Sat Nov 21, 2009 11:26 pm, edited 1 time in total.
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

Claudiu Mindrila wrote:Prima inegalitate este din lista scurta IMO, 2001. A se vedea urmatorul link.
Asa e. A fost propunerea Romaniei si foarte aproape de a fi aleasa in concurs. O interventie a liderului din Kazahstan (care a spus ca i se pare ca a mai vazut ceva similar, dar nu stie unde...) a facut ca problema sa fie eliminata. La votul initial, a fost cea mai apreciata problema.
Bogdan Enescu
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Aceeasi problema (problema 1) a aparut si in American Mathematical Monthly in 2009 propusa de un chinez.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Deci pana la urma cine este autorul?ca in arges daca imi aduc bine aminte era semnata de un cunoscut autor de inegalitati din arges ,evident poate doar a rezolvat-o sau chiar o fi propusa de dansul .chiar atunci in barem apareau 2 solutii ,amandoua avand la baza CBS
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Folosim inegalitatea CBS
\( \sum{a_k}\le\sqrt{n}\sqrt{\sum a_k^2} \) cu \( a_k=\frac{x_k}{1+\sum_{i=1}^k x_i^2} \)
Astfel tot ce ramane de demonstrat este
\( \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2<1 \)
Dar \( (\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le\frac{x_k^2}{(1+x_1^2+...+x_{k-1}^2)(1+x_1^2+...+x_k^2)}=\frac{1}{1+x_1^2+...+x_{k-1}^2}-\frac{1}{1+x_1^2+...+x_k^2} \)
\( \Longrightarrow \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le 1-\frac{1}{1+x_1^2+...+x_n^2}<1 \)
Post Reply

Return to “Inegalitati”