O relatie metrica utila intr-un triunghi.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O relatie metrica utila intr-un triunghi.

Post by Virgil Nicula »

Lema.

Fie \( \triangle ABC \) si punctele \( D \) , \( E \) , \( F \) care apartin dreptelor \( BC \) , \( CA \) , \( AB \) respectiv. Notam \( P\in AD\cap EF \) . Sa se arate ca exista relatia metrica \( \underline{\overline{\left\|\ \frac {PF}{PE} = \frac {DB}{DC}\cdot\frac {AF}{AE}\cdot \frac {AC}{AB}\ \right\|}} \) .

Virgil Nicula wrote:Aplicatie. Fie \( \triangle ABC \) cu cercul inscris \( w=C(I) \) si punctele \( D\in (BC) \), \( E\in (CA \), \( F\in (BA \) astfel ca \( \frac {DB}{DC}=\frac {BF}{CE} \). Pentru un punct \( P\in AI \) notam \( K\in DF\cap BP \) , \( L\in DE\cap CP \). Sa se arate ca \( LK\parallel EF \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se impart relatiile:

\( \frac{A[AFP]}{A[AEP]}=\frac{AF\sin \angle{BAD}}{AE\sin\angle{CAD}}=\frac{FP}{PE} \)

si

\( \frac{A[ABD]}{A[ADC]}=\frac{AB\sin \angle{BAD}}{AC\sin\angle{CAD}}=\frac{BD}{DC} \)
Post Reply

Return to “Clasa a IX-a”