Concursul Nicolae Coculescu editia 2009 subiectul I

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Concursul Nicolae Coculescu editia 2009 subiectul I

Post by Andi Brojbeanu »

Fie \( SABC \) un tetraedru echifacial (fetele sunt triunghiuri congruente). In triunghiurile \( SAB, SBC \), respectiv \( SCA \), construim bisectoarele \( AD, BE, CF \), cu \( D\in (SB), E\in (SC), F\in (SA) \), si \( DM\parallel AB, EN\parallel BC, FP\parallel CA \), unde \( M\in (SA), N\in (SB) \) si \( P\in (SC) \). Sa se arate ca:
\( 2(MD+NE+PF)\leq AB+BC+CA \).

Costel Anghel
Last edited by Andi Brojbeanu on Sat Nov 28, 2009 6:30 pm, edited 4 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand \( AB=c , BC=a , CA=b \) rezulta ca \( MD=\frac{ac}{a+c} \) si analoagele.

Apoi aplicam \( HM\le AM \)
Post Reply

Return to “Clasa a VIII-a”