Fie \( a, b, c \) trei numere naturale nenule astfel incat:
\( \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\geq \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a^2}{c+a}+ \frac{b^2}{a+b}+ \frac{c^2}{b+c} \)
Sa se arate ca \( a=b=c \).
Concursul Matefbc editia a 2-a problema 3
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
-
moldovan ana
- Pitagora
- Posts: 54
- Joined: Wed Sep 23, 2009 4:10 pm
Se utilizeaza inegalitatea Cebasev pt. 2 siruri de aceeasi monotonie ; astfel deoarece inegalitatea este invarianta la permutari circulare putem presupune fara a restrange generalitatea ca : a >= b >= c ceea ce conduce la a^2 >= b^2 >= c^2 care este primul sir si apoi (a + b) >= (a + c) >= (b + c) ceea ce conduce la al doilea sir : 1/(b+c) >= 1/(a + c) >= 1/(a + b)
Deci aplicand inegalitetea Cebasev obtinem o inegalitate in contradictie cu cea din enuntul problemei, deci ramane numai cazul a=b=c.
Deci aplicand inegalitetea Cebasev obtinem o inegalitate in contradictie cu cea din enuntul problemei, deci ramane numai cazul a=b=c.