Sir cu radicali

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Sir cu radicali

Post by andy crisan »

Fie \( (x_{n})_{n\geq 2} \) un sir de numere reale definit prin relatia de recurenta \( x_{n+1}=\sqrt[n]{n+x_{n}}(\forall) n\in\mathbb{N},n\geq 2 \) si \( x_{2}=2 \).
Studiati convergenta sirului si, in cazul in care este convergent, determinati \( \lim_{n\to\infty}{x_{n}} \).


Andrei Crisan
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se arata ca \( x_n\in (1,2] \) apoi se aplica Criteriul radicalului si se obtine \( x_n\to 1 \ (n\to \infty) \).
Post Reply

Return to “Analiza matematica”