Fie \( x_i,y_i>0 \),\( i=\overline{1,n} \) cu \( \displaystyle \sum_{i=1}^{n} x_i\geq \sum_{i=1}^{n} x_iy_i \). Demonstrati ca pentru orice \( p\in\mathbb{N} \) avem \( \displaystyle \sum_{i=1}^{n}\frac{x_i}{y_i^p}\geq \sum_{i=1}^{n} x_i \).
Cezar Lupu
Observatie: Inegalitatea are loc pentru orice \( p\geq 0 \).
Stelele Matematicii Problema 1
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Vlad Matei
- Pitagora
- Posts: 58
- Joined: Wed Sep 26, 2007 6:44 pm
- Location: Bucuresti
Stelele Matematicii Problema 1
Show must go on!
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)