Inegalitate cu numere cardinale

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate cu numere cardinale

Post by Marius Mainea »

Daca A si B sunt doua multimi finite, atunci \( |A\cup B|^n+|A\cap B|^n\ge |A|^n+|B|^n \) pentru orice \( n\ge 1 \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie:

Notam \( |A\setminus B|=a \), \( |A\cap B|=b \), \( |B\setminus A|=c \) si inegalitatea devine

\( (a+b+c)^n+b^n \ge (a+b)^n+(b+c)^n \), \( (\forall)n\ge 1 \)
Post Reply

Return to “Clasa a IX-a”