Inegalitate

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate

Post by Claudiu Mindrila »

Sa se arate ca pentru oricare \( x>0 \) si oricare \( n \in \mathbb{N}^* \) are loc inegalitatea \( \frac{1+x^n}{1+x} \ge \frac{n+1}{2n} \).

Marian Cucoanes
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se analizeaza cazurile:
1) \( x\ge 1 \)
Eliminand numitorii obtinem \( 2nx^n-(n+1)x+n-1\ge 0 \), evident.

2) \( x< 1 \)
Notand \( x=\frac{1}{y} \) si eliminand numitorii obtinem \( 2ny^{n+1}+(n-1)(y-1)-2\ge 0 \), evident deoarece \( y> 1 \).

Am gresit la calcule :(

Voi remedia in scurt timp.


Solutia 2

Folosind AM-GM pentru n numere

\( 2nx^n+n-1=2nx^n\underbrace{+1+1+...+1}_{n-1\mbox{ termeni}}\ge n\sqrt[n]{2nx^n\cdot 1\cdot 1...\cdot 1}\ge(n+1)x \), deoarece \( 2n\ge(1+\frac{1}{n})^n \) (exercitiu).
Last edited by Marius Mainea on Wed Dec 23, 2009 3:18 pm, edited 2 times in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Cazul \( x\geq1 \) e trivial cum a zis si domnul Mainea.
Pt. \( x<1 \), notam \( x=\frac{1}{y} \) si aducand la numitor comun obtinem ca relatia din enunt e echivalenta cu:
\( 2n\geq x^{n-1}(n+1-x(n-1)) \), dar din \( m_g\leq m_a \) obtinem ca:
\( x^{n-1}(n+1-x(n-1))\leq (\frac{n+1}{n})^n<e<2n \forall, n\geq2 \).
Cazul \( n=1 \) e deasemenea trivial si se trateaza separat, caci e singurul care da egalitate.
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a IX-a”