Fie ABCD un tetraedru regulat si M, N doua puncte situate pe suprafata lui.
Aratati ca \( m(\angle{MAN})\le 60^{\circ} \).
Concursul ,,Gh.Lazar'', 2005
Tetraedru regulat.
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Presupunem \( AB=1 \) si pentru \( M\in [CB] \) , \( N\in [CD] \) notam \( MB=x\le 1 \) si \( MD=y\le 1 \) .
Se observa ca \( AM^2=x^2-x+1 \) , \( AN^2=y^2-y+1 \) si \( MN^2=x^2+y^2-(x+y)+1-xy \) .
Asadar \( m\left(\angle MAN\right)\le 60^{\circ}\Longleftrightarrow \cos\left(\angle MAN\right)\ge \frac 12 \Longleftrightarrow AM^2+AN^2-MN^2\ge AM\cdot AN \) .
Problema se reduce la inegalitatea \( \{x,y\}\ \subset\ [0,1]\ \Longrightarrow\ 1+xy\ \ge\ \sqrt {\left(x^2-x+1\right)\left(y^2-y+1\right)} \) care este echivalenta
cu inegalitatea evidenta \( 3xy+(x+y)(1-x)(1-y)\ \ge\ 0 \) . Avem egalitate daca si numai daca \( x=0 \) si \( y=1 \) sau
\( x=1 \) si \( y=0 \) sau \( x=y=0 \) , adica \( M\equiv B \) si \( N\equiv C \) sau \( M\equiv C \) si \( N\equiv D \) sau \( M\equiv B \) si \( N\equiv D \) .
Se observa ca \( AM^2=x^2-x+1 \) , \( AN^2=y^2-y+1 \) si \( MN^2=x^2+y^2-(x+y)+1-xy \) .
Asadar \( m\left(\angle MAN\right)\le 60^{\circ}\Longleftrightarrow \cos\left(\angle MAN\right)\ge \frac 12 \Longleftrightarrow AM^2+AN^2-MN^2\ge AM\cdot AN \) .
Problema se reduce la inegalitatea \( \{x,y\}\ \subset\ [0,1]\ \Longrightarrow\ 1+xy\ \ge\ \sqrt {\left(x^2-x+1\right)\left(y^2-y+1\right)} \) care este echivalenta
cu inegalitatea evidenta \( 3xy+(x+y)(1-x)(1-y)\ \ge\ 0 \) . Avem egalitate daca si numai daca \( x=0 \) si \( y=1 \) sau
\( x=1 \) si \( y=0 \) sau \( x=y=0 \) , adica \( M\equiv B \) si \( N\equiv C \) sau \( M\equiv C \) si \( N\equiv D \) sau \( M\equiv B \) si \( N\equiv D \) .
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
OK. Uitasem. \( ABM\equiv DBM\Longrightarrow \underline{AM=DM} \) si \( m(\angle MND)\ge (\angle MCN)=60^{\circ}= \)
\( m(\angle BDN)\ge m(\angle MDN) \) \( \Longrightarrow \) \( m(\angle MND)\ge m(\angle MDN)\Longrightarrow \underline{DM\ge MN} \) .
Asadar \( AM\ge MN \) . Analog se arata ca \( AN\ge MN \) . Deci \( m(\angle MAN)\le 60^{\circ} \) .
\( m(\angle BDN)\ge m(\angle MDN) \) \( \Longrightarrow \) \( m(\angle MND)\ge m(\angle MDN)\Longrightarrow \underline{DM\ge MN} \) .
Asadar \( AM\ge MN \) . Analog se arata ca \( AN\ge MN \) . Deci \( m(\angle MAN)\le 60^{\circ} \) .