Tetraedru regulat.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Tetraedru regulat.

Post by Marius Mainea »

Fie ABCD un tetraedru regulat si M, N doua puncte situate pe suprafata lui.
Aratati ca \( m(\angle{MAN})\le 60^{\circ} \).

Concursul ,,Gh.Lazar'', 2005
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie:

Problema se reduce la studiul cazului cand M si N sunt pe laturile triunghiului BDC.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Presupunem \( AB=1 \) si pentru \( M\in [CB] \) , \( N\in [CD] \) notam \( MB=x\le 1 \) si \( MD=y\le 1 \) .

Se observa ca \( AM^2=x^2-x+1 \) , \( AN^2=y^2-y+1 \) si \( MN^2=x^2+y^2-(x+y)+1-xy \) .

Asadar \( m\left(\angle MAN\right)\le 60^{\circ}\Longleftrightarrow \cos\left(\angle MAN\right)\ge \frac 12 \Longleftrightarrow AM^2+AN^2-MN^2\ge AM\cdot AN \) .

Problema se reduce la inegalitatea \( \{x,y\}\ \subset\ [0,1]\ \Longrightarrow\ 1+xy\ \ge\ \sqrt {\left(x^2-x+1\right)\left(y^2-y+1\right)} \) care este echivalenta

cu inegalitatea evidenta \( 3xy+(x+y)(1-x)(1-y)\ \ge\ 0 \) . Avem egalitate daca si numai daca \( x=0 \) si \( y=1 \) sau

\( x=1 \) si \( y=0 \) sau \( x=y=0 \) , adica \( M\equiv B \) si \( N\equiv C \) sau \( M\equiv C \) si \( N\equiv D \) sau \( M\equiv B \) si \( N\equiv D \) .
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Avem \( AM=DM>MN \) si \( AN=BN>MN \) si de aici MN este cea mai mica latura in triunghiul AMN deci \( \angle{MAN}\le 60^{\circ} \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

De ce \( AM=DM \) si \( AN=BN \) ?
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Pentru ca ABCD este regulat.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

OK. Uitasem. \( ABM\equiv DBM\Longrightarrow \underline{AM=DM} \) si \( m(\angle MND)\ge (\angle MCN)=60^{\circ}= \)

\( m(\angle BDN)\ge m(\angle MDN) \) \( \Longrightarrow \) \( m(\angle MND)\ge m(\angle MDN)\Longrightarrow \underline{DM\ge MN} \) .

Asadar \( AM\ge MN \) . Analog se arata ca \( AN\ge MN \) . Deci \( m(\angle MAN)\le 60^{\circ} \) .
Post Reply

Return to “Clasa a VIII-a”