Concursul "Cezar Ivanescu" 2008

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Concursul "Cezar Ivanescu" 2008

Post by Marius Mainea »

Daca a,b,c,d reale sunt astfel incat

\( a+b\sqrt{2}+c\sqrt{3}+d\sqrt{4}\ge \sqrt{10(a^2+b^2+c^2+d^2)} \)

aratati ca \( a^2+d^2=b^2+c^2 \)
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Aplicam inegalitatea C.B.S : \( (a+b\sqrt 2+c\sqrt 3+d\sqrt 4)^2\le (a^2+b^2+c^2+d^2)(1+2+3+4) \)

\( \Longleftrightarrow\ |a+b\sqrt 2+c\sqrt 3+d\sqrt 4|\le \sqrt{10(a^2+b^2+c^2+d^2)} \) si conform enuntului suntem in cazul de egalitate .

Asadar \( \frac a1=\frac{b}{sqrt 2}=\frac c{\sqrt 3}=\frac{d}{\sqrt 4} \) , iar egalitatea de demonstrat se verifica usor .
Last edited by Mateescu Constantin on Mon Dec 28, 2009 5:38 pm, edited 1 time in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Acolo trebuie sa pui modul. Iese la fel, dar nu e corect ce ai scris tu, ca nu stii ca termenul din stanga e pozitiv.
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a VIII-a”