\( 1)\ \left|\begin{array}{c}
a,\ b,\ c\in\mathbb{N}\\
\frac{ab+1}{c}\in\mathbb{N},\ \frac{bc+1}{a}\in\mathbb{N},\ \frac{ca+1}{b}\in\mathbb{N}\end{array}\right|\Longrightarrow a=?,\ b=?,\ c=? \)
\( 2)\ \left|\begin{array}{c}
a,b,c\in\mathbb{Q},\ a,b>0\\
a+\frac{1}{b}\in\mathbb{Z},\ b+\frac{1}{c}\in\mathbb{Z},\ c+\frac{1}{a}\in\mathbb{Z}\end{array}\right|\Longrightarrow a=?,\ b=?,\ c=? \)
\( 3)\ \left|\begin{array}{c}
a,\ b,\ c\in\mathbb{Z}\\
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in\mathbb{Z}\\
\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\in\mathbb{Z}\end{array}\right|\Longrightarrow\left|a\right|=\left|b\right|=\left|c\right| \)
Cateva probleme (clasice) cu numere intregi
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Cateva probleme (clasice) cu numere intregi
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)