Fie ABCDE un hexagon regulat unde se considera \( M\in (AB),N\in (BC),P\in (CD),Q\in(DE),R\in(EF),S\in(FA) \) astfel incat \( MB+BN=QD+FR \) si \( RF+FS=BN+DP \). Demonstrati ca \( \triangle MPR \) si \( \triangle NQS \) au acelasi centru de greutate.
***
Hexagon regulat
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutia mea (vectoriala)
Incepem prin a face notatiile \( x=\frac{MB}{AB},\ y=\frac{BN}{BC},\ z=\frac{PD}{CD},\ t=\frac{QD}{ED},\ u=\frac{FR}{FE},\ v=\frac{FS}{FA} \).
Conform ipotezei avem \( x+y=t+v,\ u+v=y+z \) de unde si \( x+u=t+z \). Deoarece \( \vec{MN}=\vec{BN}-\vec{BM} \) si analoagele avem ca:
\( \vec{MN}+\vec{PQ}+\vec{RS}=\left(x-t\right)\vec{AB}+\left(y-u\right)\vec{BC}+\left(z-v\right)\vec{CD}=\left(x-t\right)\left(\vec{AB}+\vec{CD}-\vec{BC}\right) \), folosind relatiile mai sus mentionate.
Insa \( \vec{AB}+\vec{CD}-\vec{BC}=0 \) (exercitiu!) si concluzia se impune.
Incepem prin a face notatiile \( x=\frac{MB}{AB},\ y=\frac{BN}{BC},\ z=\frac{PD}{CD},\ t=\frac{QD}{ED},\ u=\frac{FR}{FE},\ v=\frac{FS}{FA} \).
Conform ipotezei avem \( x+y=t+v,\ u+v=y+z \) de unde si \( x+u=t+z \). Deoarece \( \vec{MN}=\vec{BN}-\vec{BM} \) si analoagele avem ca:
\( \vec{MN}+\vec{PQ}+\vec{RS}=\left(x-t\right)\vec{AB}+\left(y-u\right)\vec{BC}+\left(z-v\right)\vec{CD}=\left(x-t\right)\left(\vec{AB}+\vec{CD}-\vec{BC}\right) \), folosind relatiile mai sus mentionate.
Insa \( \vec{AB}+\vec{CD}-\vec{BC}=0 \) (exercitiu!) si concluzia se impune.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Scriem \( A(1),\ B(\epsilon),\ C(\epsilon-1),\ D(-1),\ E(-\epsilon),\ F(1-\epsilon) \), unde \( \epsilon=1/2+i\sqrt{3}/2 \), iar afixele puntelor M, ... , S le scriem \( m=1-a+a\epsilon \), \( n=\epsilon-b \), \( p=\epsilon-1-c\epsilon \), \( q=-1+d-d\epsilon \), \( r=-\epsilon+e \), \( s=1-\epsilon+f\epsilon \), cu a, ... , f numere reale in (0,1).
Cele doua egalitati din enunt se traduc in \( b+e=a+d \) si respectiv \( f+c=b+e \). Cele doua triunghiuri au acelasi centru de greutate daca \( -a+a\epsilon-c\epsilon+e=-b+d-d\epsilon+f\epsilon \), ceea ce este evident acum.
The details are left to the interested reader.
Cele doua egalitati din enunt se traduc in \( b+e=a+d \) si respectiv \( f+c=b+e \). Cele doua triunghiuri au acelasi centru de greutate daca \( -a+a\epsilon-c\epsilon+e=-b+d-d\epsilon+f\epsilon \), ceea ce este evident acum.
The details are left to the interested reader.
Last edited by bae on Tue Jan 05, 2010 11:03 am, edited 1 time in total.