A problem from the greek math forum, unsolved:
Find all continuous functions \( f:\mathbb{R}\to\mathbb{R} \) with
\( \int _{x-y} ^{x+y} f(t)dt = f(x)f(y), \forall x , y \in \mathbb{R}. \)
Find the function
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
O solutie ar putea sa fie functia constanta 0.
Daca presupunem ca functia noastra nu este constanta, atunci exista un \( x \) cu \( f(x)\neq 0 \). Atunci schimband \( y \) cu \( -y \) in relatia din enunt obtinem ca functia \( f \) este impara.
Notand cu \( F(x)=\int_0^x f(t) dt \) si folosind faptul ca \( f \) este continua, obtinem ca \( F \) este derivabila si \( F'=f \).
Din enunt, avem \( F(x+y)-F(x-y)=f(x)f(y) \). Fixand din nou pe \( x \) pentru care \( f(x)\neq 0 \) obtinem prin inductie ca \( f \) este indefinit derivabila.
Daca presupunem ca functia noastra nu este constanta, atunci exista un \( x \) cu \( f(x)\neq 0 \). Atunci schimband \( y \) cu \( -y \) in relatia din enunt obtinem ca functia \( f \) este impara.
Notand cu \( F(x)=\int_0^x f(t) dt \) si folosind faptul ca \( f \) este continua, obtinem ca \( F \) este derivabila si \( F'=f \).
Din enunt, avem \( F(x+y)-F(x-y)=f(x)f(y) \). Fixand din nou pe \( x \) pentru care \( f(x)\neq 0 \) obtinem prin inductie ca \( f \) este indefinit derivabila.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog