Inegalitate conditionata cu \sum \frac{1}{ab}=1

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate conditionata cu \sum \frac{1}{ab}=1

Post by Claudiu Mindrila »

Fie \( a,\ b,\ c \) numere reale pozitive a. i. \( \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1. \) Sa se arate ca \( \frac{3}{2}\le\frac{ab-1}{ab+1}+\frac{bc-1}{bc+1}+\frac{ca-1}{ca+1}<2 \).

Mircea Becheanu
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Numerele \( x=\frac{b+c}{abc} \) si analoagele pot fi laturile unui triunghi si inegalitatea este echivalenta cu

\( \frac{3}{2}\le \sum\frac{x}{y+z}<2 \)
Post Reply

Return to “Clasa a IX-a”