Suma Riemann sau poate nu!

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Suma Riemann sau poate nu!

Post by Theodor Munteanu »

Calculati:
\( {\lim }\limits_{t \to \infty } \int\limits_0^t {\frac{1}{{\left( {x^2 + 1} \right)\left( {x^2 + 4} \right)\left( {x^2 + 9} \right) \ldots \left( {x^2 + n^2 } \right)}}dx} \)
La inceput a fost numarul. El este stapanul universului.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Cu schimbarea de variabila \( x=\tan y \) se obtine ca limita este \( \int_0^{\frac{\pi}{2}}\frac{\cos^{2(n-1)}y}{(4\cos^2y+\sin^2y)(9\cos^2y+\sin^2y)....(n^2\cos^2y+\sin^2y)}dy \)
Post Reply

Return to “Analiza matematica”