O generalizare a unei probleme de medie(own)

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

O generalizare a unei probleme de medie(own)

Post by Theodor Munteanu »

Fie \( f:[0,1] \to R \) o functie indefinit derivabila pe [0,1].Sa se arate ca \( \exists {\rm c} \in {\rm [0,1]} \) astfel incat \( \begin{array}{l}
\int\limits_{\rm 0}^{\rm 1} {f(x)dx = f(0) + \frac{1}{2}f^{(1)} (0) + \frac{1}{6}} f^{(2)} (0) + ... + \frac{1}{{n!}}f^{(n - 1)} (0) + \frac{1}{{(n + 1)!}}f^{(n)} (c) \\
\end{array} \)
,pentru orice \( n \in N \).
La inceput a fost numarul. El este stapanul universului.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Pai, e chiar formula lui Taylor, nu?
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Folosim dezvoltarea in serie Taylor careia ii aplicam restul lui Lagrange(formula lui Mac Laurin) pt functia \( F:[0,1]\rightarrow\mathbb{R},F(x)=\int_0^x f(t)dt \).Avem ca exista \( c_x\in(0,x) \) a.i.\( F(x)=F(0)+\frac{F^{(1)}(0)}{1!}+\frac{F^{(2)}(0)}{2!}+...+\frac{F^{(n+1)}(0)}{(n+1)!}+\frac{F^{(n+2)}(c_x)}{(n+2)!} \).Aplicand aceasta pt \( x=1 \) si tinand cont ca \( F^{(1)}=f \) avem concluzia.
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Post by Theodor Munteanu »

Ei bine da,asa este doar ca am vazut doua probleme in culegerea de excelenta care erau cazuri particulare(n=1,n=2) si acolo se folosea integrare prin parti de 1 respectiv 2 ori si teorema de medie insa la fel de bine se putea folosi asta.
La inceput a fost numarul. El este stapanul universului.
Post Reply

Return to “Analiza matematica”