Inegalitate cu numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Inegalitate cu numere complexe

Post by DrAGos Calinescu »

Fie \( z_1,z_2\in\mathbb{C} \).Demonstrati urmatoarea inegalitate
\( |z_1|+|z_2|\le |z_1+z_2|+\frac{2|z_1z_2|}{|z_1+z_2|} \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Prin ridicare la patrat

\( |z_1|^2+|z_2|^2+2|z_1z_2|\le|z_1+z_2|^2+4|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)
sau

\( 0\le z_1\overline{z_2}+z_2\overline{z_1}+2|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)

care este adevarata deoarece

\( -z_1\overline{z_2}-z_2\overline{z_1}\le|z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| \)
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

Deomnstram
Marius Mainea wrote: \( |z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| \)
Ridicand la patrat obtinem

\( (z_1\overline{z_2}+z_2\overline{z_1})(z_1\overline{z_2}+z_2\overline{z_1})=2|z_1|^2|z_2|^2+z_1^2\overline{z_2}^2+z_2^2\overline{z_1}^2\leq4|z_1|^2|z_2|^2\Leftrightarrow 2|z_1|^2|z_2|^2-z_1^2\overline{z_2}^2-z_2^2\overline{z_1}^2=|z_1\overline{z_2}-z_2\overline{z_1}|^2\geq0 \). inegalitate adevarata.
Post Reply

Return to “Clasa a X-a”