Fie \( z_1,z_2\in\mathbb{C} \).Demonstrati urmatoarea inegalitate
\( |z_1|+|z_2|\le |z_1+z_2|+\frac{2|z_1z_2|}{|z_1+z_2|} \)
Inegalitate cu numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Prin ridicare la patrat
\( |z_1|^2+|z_2|^2+2|z_1z_2|\le|z_1+z_2|^2+4|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)
sau
\( 0\le z_1\overline{z_2}+z_2\overline{z_1}+2|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)
care este adevarata deoarece
\( -z_1\overline{z_2}-z_2\overline{z_1}\le|z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| \)
\( |z_1|^2+|z_2|^2+2|z_1z_2|\le|z_1+z_2|^2+4|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)
sau
\( 0\le z_1\overline{z_2}+z_2\overline{z_1}+2|z_1z_2|+\frac{4|z_1z_2|^2}{|z_1+z_2|^2} \)
care este adevarata deoarece
\( -z_1\overline{z_2}-z_2\overline{z_1}\le|z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| \)
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
Deomnstram
\( (z_1\overline{z_2}+z_2\overline{z_1})(z_1\overline{z_2}+z_2\overline{z_1})=2|z_1|^2|z_2|^2+z_1^2\overline{z_2}^2+z_2^2\overline{z_1}^2\leq4|z_1|^2|z_2|^2\Leftrightarrow 2|z_1|^2|z_2|^2-z_1^2\overline{z_2}^2-z_2^2\overline{z_1}^2=|z_1\overline{z_2}-z_2\overline{z_1}|^2\geq0 \). inegalitate adevarata.
Ridicand la patrat obtinemMarius Mainea wrote: \( |z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| \)
\( (z_1\overline{z_2}+z_2\overline{z_1})(z_1\overline{z_2}+z_2\overline{z_1})=2|z_1|^2|z_2|^2+z_1^2\overline{z_2}^2+z_2^2\overline{z_1}^2\leq4|z_1|^2|z_2|^2\Leftrightarrow 2|z_1|^2|z_2|^2-z_1^2\overline{z_2}^2-z_2^2\overline{z_1}^2=|z_1\overline{z_2}-z_2\overline{z_1}|^2\geq0 \). inegalitate adevarata.