Sa se arate ca
\( {\lim}\limits_{n\to\infty}[a\ln(3+n)+b\ln(2+n)+c\ln(1+n)]=0 <=> a+b+c=0 \)
Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
\( \lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(n+2)+c\ln(n+1)]=\lim_{n\rightarrow\infty}[a\ln(1+\frac{3}{n})+b\ln(1+\frac{2}{n})+c\ln(1+\frac{1}{n})+a\ln{n}+b\ln{n}+c\ln{n}]=\lim_{n\rightarrow\infty}[a\frac{3}{n}+b\frac{2}{n}+c\frac{1}{n}+(a+b+c)\ln{n}]=\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}] \)
\( \lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(2+n)+c\ln(1+n)]=0 <=>\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}]=0<=> {a+b+c}=0 \)
\( \lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(2+n)+c\ln(1+n)]=0 <=>\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}]=0<=> {a+b+c}=0 \)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Admitere, Informatica, Univ. "A.I.Cuza" Iasi,
Notam \( a_n= a\ln(3+n)+b\ln(2+n)+c\ln(1+n) \) . Se arata usor ca
\( a_n=(a+b+c)\cdot\ln n+a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right) \) .
Se observa ca \( \lim_{n\to\infty}\ \left[a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right)\right]=0 \)
si \( \lim_{n\to\infty}\ a_n=\lim_{n\to\infty}\ (a+b+c)\cdot\ln n=\left\{\begin{array}{ccc}
-\infty & \mathrm{daca} & a+b+c<0\\\\\\\\
0 & \mathrm{daca} & a+b+c=0\\\\\\\\
\infty & \mathrm{daca} & a+b+c>0\end{array} \) .
\( a_n=(a+b+c)\cdot\ln n+a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right) \) .
Se observa ca \( \lim_{n\to\infty}\ \left[a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right)\right]=0 \)
si \( \lim_{n\to\infty}\ a_n=\lim_{n\to\infty}\ (a+b+c)\cdot\ln n=\left\{\begin{array}{ccc}
-\infty & \mathrm{daca} & a+b+c<0\\\\\\\\
0 & \mathrm{daca} & a+b+c=0\\\\\\\\
\infty & \mathrm{daca} & a+b+c>0\end{array} \) .