polinoame de matrici

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

polinoame de matrici

Post by mihai++ »

Fie \( A\in \mathcal{M}_{2,n}(\mathbb{C}),B\in\mathcal{M}_{n,2}(\mathbb{C}). \) Demonstrati ca \( f_{BA}=z^{n-2}f_{AB} \). Nu stiu daca e adevarata, dar am auzit ca e in culegerea Fadeev-Sominski.
n-ar fi rau sa fie bine :)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Are loc un rezultat mai general .Uite aici.

Si rezultatul s-a mai postat si pe mateforum aici,dar fara nici o demonstratie.
A mathematician is a machine for turning coffee into theorems.
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

Am gasit o solutie mai usoara zic eu.
Este suficient sa aratam ca \( \det(I_n-AB)=\det(I_m-BA),A\in\mathcal{M}_{n,m}(\mathbb{C}),B\in\mathcal{M}_{m,n}(\mathbb{C}) \) caci putem considera, pentru cazul cu \( x \) \( A\to \frac{1}{x}A \).
Consideram \( n>m \)
Fie \( C=\(A\mbox{ } 0_{n-m}) \) si \( D=\(B\\0_{n-m}\) \),\( C,D\in\mathcal{M}_{n}(\mathbb{C}) \).
Facand inmultirile obtinem
\( CD=AB\Rightarrow I_n-AB=I_n-CD\Rightarrow \det(I_n-AB)=\det(I_n-CD) \)
\( DC=\(BA\mbox{ }0_{n-m}\\0_{n-m}\mbox{ }0_{n-m}\) \)\( \Rightarrow I_n-DC=\(I_m-BA\mbox{ }0_{n-m}\\0_{n-m}\mbox{ }I_{n-m}\)\Rightarrow \det(I_n-DC)=\det(I_m-BA) \).
De unde trebuie aratat ca \( \det(I_n-CD)=\det(I_n-DC) \) care este usor
Post Reply

Return to “Algebra”