Sa se calculeze integrala:
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
calcul integrala definita
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
calcul integrala definita
Last edited by Cezar Lupu on Sun Mar 07, 2010 9:20 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
cineva sa stearga pt ca postul acesta nu-si mai avea rostul.Multumesc
Last edited by Laurentiu Tucaa on Sun Mar 07, 2010 10:10 am, edited 1 time in total.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
-
Cosmin Pohoata
- Euclid
- Posts: 20
- Joined: Fri Feb 01, 2008 12:13 am
- Location: Princeton, NJ
- Contact:
Re: calcul integrala definita
Se observa ca \( \int_{0}^{x}{\frac{dt}{\cos{t}}} = \frac{1}{2} \log \left(\frac{1+\sin{x}}{1-\sin{x}}\right) \). Deci \( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt = 2 \int_{0}^{\pi/4} \left(\frac{\pi}{4} - t \right) \frac{dt}{\cos{t}} \). Restul reprezinta calcule plictisitoare probabil.Cezar Lupu wrote:Sa se calculeze integrala:
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
Lema 1. Fiecare om are dreptul la un paharel.
Lema 2. Dupa un paharel esti un alt om.
Lema 2. Dupa un paharel esti un alt om.