JBTST V 2010, Problema 2

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

JBTST V 2010, Problema 2

Post by Andi Brojbeanu »

FF simpla !
Fie \( ABC \) un triunghi si \( D, E, F \) mijloacele laturilor \( BC, CA, AB \) respectiv.

Sa se arate ca \( \angle{DAC}=\angle{ABE} \) daca si numai daca \( \angle{AFC}=\angle{BDA} \) .
Last edited by Andi Brojbeanu on Mon May 24, 2010 8:39 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Intai \( DF\parallel AC\Longrightarrow\widehat{ADF}=\widehat{DAC} \). Fie \( G \) centrul de greutate al triunghiului \( ABC \).
Acum,

\( \widehat{DAC}=\widehat{ABE}\Longleftrightarrow\widehat{ABE}=\widehat{ADF}\Longleftrightarrow\widehat{FBG}=\widehat{FDG}\Longleftrightarrow BDFG\ \text{inscriptibil}\Longleftrightarrow\widehat{AFC}=\widehat{BDA} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Fie \( ABC \) un triunghi si \( D, E, F \) mijloacele laturilor \( BC, CA, AB \) respectiv.

Sa se arate ca \( \angle{DAC}=\angle{ABE} \) daca si numai daca \( \angle{AFC}=\angle{BDA} \) .
Observatii.

1 - \( \ \widehat{DAC}\equiv\widehat{ABE}\ \Longleftrightarrow\ \widehat{AFC}\equiv\widehat{BDA}\ \Longleftrightarrow\ a^2+c^2=2b^2 \) .

2 -
Fie \( ABC \) un triunghi si mijlocul \( E \) al laturii \( CA \) . Pentru un punct \( M\in (BE) \) notam \( D\in AM\cap BC \) si \( F\in CM\cap AB \) .

Sa se arate ca \( \angle{DAC}=\angle{ABE}\ \Longleftrightarrow\ \angle{AFC}=\angle{BDA}\ \Longleftrightarrow\ (1-2m)(a^2+c^2)=(1-m)b^2 \) , unde \( MD=m\cdot AD \) .
Post Reply

Return to “Geometrie”