OJM 2010 Problema I

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

OJM 2010 Problema I

Post by Andi Brojbeanu »

O dreapta care trece prin centrul \( I \) al cercului inscris unui triunghi \( ABC \) taie laturile \( AB \) si \( AC \) in \( P \), respectiv \( Q \). Notam \( BC=a, AC=b, AB=c \) si \( \frac{PB}{PA}=p, \frac{QC}{QA}=q \).
(i) Aratati ca \( a(1+p)\vec{IP}=(a-pb)\vec{IB}-cp\vec{IC} \).
(ii) Aratati ca \( a=bp+cq \).
(iii) Aratati ca daca \( a^2=4bpcq \), atunci dreptele \( AI, BQ \) si \( CP \) sunt concurente.
Dan Nedeianu, Drobeta Turnu-Severin
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Post Reply

Return to “Clasa a IX-a”