Fie \( M \) si \( N \) mijloacele diagonalelor \( [AC] \) si \( [BD] \) ale patrulaterului inscriptibil \( ABCD \). Sa se arate ca: \( \frac{|AC-BD|}{2}\le MN\le \frac{AC+BD}{2} \).
IMAC 2010 Problema 4
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
IMAC 2010 Problema 4
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Spataru Stefan
- Euclid
- Posts: 13
- Joined: Mon May 03, 2010 9:02 pm
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Metoda de mai jos nu utilizeaza vectorii si NU este la nivelul clasei a VII - a.Fie \( M \) si \( N \) mijloacele diagonalelor \( [AC] \) si \( [BD] \) ale patrulaterului inscriptibil \( ABCD \). Sa se arate ca: \( \frac{|AC-BD|}{2}\le MN\le \frac{AC+BD}{2} \).
Metoda 2. Notam \( AB=a \) , \( BC=b \) , \( CD=c \) , \( DA=d \) , \( AC=e \) , \( BD=f \) si mijloacele \( X \) , \( Y \) ale laturilor
\( [AB] \) , \( [BC] \) respectiv. Vom folosi relatiile \( ef=ac+bd \) (Ptolemeu) si \( e^2+f^2+4\cdot MN^2= \) \( a^2+b^2+c^2+d^2 \) (Euler).
In \( \triangle MNX \) avem \( XM=\frac b2 \) si \( XN=\frac d2 \) . Deci \( \frac {|b-d|}{2}\ \le\ MN\ \le\ \frac {b+d}{2} \) .
In \( \triangle MNY \) avem \( YM=\frac a2 \) si \( YN=\frac c2 \) . Deci \( \frac {|a-c|}{2}\ \le\ MN\ \le\ \frac {a+c}{2} \) .
Relatiile Euler & Ptolemeu \( \ \Longrightarrow\ (e-f)^2+4\cdot MN^2=(a-c)^2+(b-d)^2\ \le\ 8\cdot MN^2\ \Longrightarrow\ \frac {|e-f|}{2}\ \le\ MN \) .
Relatiile Euler & Ptolemeu \( \ \Longrightarrow\ (e+f)^2+4\cdot MN^2=(a+c)^2+(b+d)^2\ \ge\ 8\cdot MN^2\ \Longrightarrow\ \frac {|e+f|}{2}\ \ge\ MN \) .
-
Spataru Stefan
- Euclid
- Posts: 13
- Joined: Mon May 03, 2010 9:02 pm