Lema. In interiorul triunghiului \( A \)-dreptunghic isoscel \( ABC \) consideram punctul \( M \) pentru
care \( m(\widehat {ABM})=m(\widehat {BCM})=15^{\circ} \) . Sa se arate ca \( MA=MB \) si \( MC=CA \) .
Probl. (own) "slicing" (foarte simpla, de debut !)
Moderators: Bogdan Posa, Laurian Filip
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Probl. (own) "slicing" (foarte simpla, de debut !)
Last edited by Virgil Nicula on Sun Jun 06, 2010 6:27 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)