IMAC Juniori II 15 mai 2010 Subiectul III

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

IMAC Juniori II 15 mai 2010 Subiectul III

Post by Andi Brojbeanu »

Se considera \( 2011 \) numere naturale nenule \( a_1, a_2, ..., a_{2010}, a_{2011} \) si fie \( n=(a_1+a_2)\cdot(a_2+a_3)\cdot...\cdot(a_{2010}+a_{2011})\cdot(a_{2011}+a_1) \).
Sa se arate ca \( 2010^n-1 \) se divide cu \( 2009\cdot 2011 \).
Romania
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Post Reply

Return to “Teoria Numerelor”