Revers al inegalitatii H. - F. intr-un triunghi particular

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Revers al inegalitatii H. - F. intr-un triunghi particular

Post by Mateescu Constantin »

Aratati ca intr-un triunghi \( ABC \) ale carui unghiuri satisfac o relatie de tipul \( A\ge B\ge 60^{\circ}\ge C \)

are loc inegalitatea : \( \fbox{\ a^2\ +\ b^2\ +\ c^2\ \le\ 4S\sqrt 3\ +\ \frac 43\ \cdot\ \[(a-b)^2\ +\ (b-c)^2\ +\ (c-a)^2\]\ } \) .
Post Reply

Return to “Inegalitati”