Sa se arate ca multimea \( A=\{m\sqrt{3}+n\sqrt{2}| m,n\in\mathbb{Z}\} \) este densa in \( \mathbb{R} \).
Multime densa
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Multime densa
Aceeasi problema am postat-o si la sectiunea Olimpiade clasa 11-a, dar ea poate fi buna si pentru un seminar de Analiza Reala, anul 1.
Sa se arate ca multimea \( A=\{m\sqrt{3}+n\sqrt{2}| m,n\in\mathbb{Z}\} \) este densa in \( \mathbb{R} \).
Sa se arate ca multimea \( A=\{m\sqrt{3}+n\sqrt{2}| m,n\in\mathbb{Z}\} \) este densa in \( \mathbb{R} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
Se aplica Lema lui Kronecker care spune ca \( \{n\alpha\} \) e densa in [0,1], pentru \( \alpha \) irational. Echivalent, \( A=\{m+n\alpha| m,n\in \mathbb{Z}\} \) e densa in \( \mathbb{R}. \)
Evident, luam \( \alpha=sqrt{\frac{3}{2}} \). Deci pentru orice numar real x gasim un sir \( x_n\in A \) astfel ca \( x_n\to x \). Atunci \( x_n\sqrt{2}\to x\sqrt{2} \). Cum \( x\sqrt{2} \) ia orice valoare reala si sirul \( x_n\sqrt{2} \) e din multimea care vrem sa aratam ca e densa, rezulta concluzia.
Evident, luam \( \alpha=sqrt{\frac{3}{2}} \). Deci pentru orice numar real x gasim un sir \( x_n\in A \) astfel ca \( x_n\to x \). Atunci \( x_n\sqrt{2}\to x\sqrt{2} \). Cum \( x\sqrt{2} \) ia orice valoare reala si sirul \( x_n\sqrt{2} \) e din multimea care vrem sa aratam ca e densa, rezulta concluzia.