O limita tehnica cu radicali

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O limita tehnica cu radicali

Post by Cezar Lupu »

Sa se calculeze

\( \lim_{n\to\infty}\frac{\sqrt[n]{n}-1}{\sqrt{n+1}-\sqrt{n}} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

\( \lim_{n\to\infty}\frac{\sqrt[n]{n}-1}{\sqrt{n+1}-\sqrt{n}}=\lim_{n\to\infty}
\frac{e^{\frac{ln(n)}{n}}-1}{\frac{ln(n)}{n}} \cdot \frac{ln(n)}{n}\cdot (\sqrt{n+1}+\sqrt{n}) = \)


\( =\lim_{n\to\infty} \frac{ln(n)}{\sqrt{n}}\cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n}}=2 \lim_{n\to\infty} \frac{ln(n)}{\sqrt{n}} =^{CS} \)

\( = 2\lim_{n\to\infty} \frac{ln\left( 1+\frac{1}{n}\right)^n}{n(\sqrt{n+1}-\sqrt{n})}=2\lim_{n\to\infty} \frac{\sqrt{n+1}+\sqrt{n}}{n}=0 \)
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”