Congruenta cu numere prime de forma 4k+3

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Congruenta cu numere prime de forma 4k+3

Post by bae »

Fie \( p>3 \) numar prim cu \( p\equiv 3(mod\, 4) \). Sa se arate ca
\( (\frac{p-1}{2})!\equiv (-1)^{\sum_{k=1}^{p-1}[\sqrt{kp}]} (mod\, p). \)
Last edited by bae on Fri Jan 04, 2008 8:55 pm, edited 1 time in total.
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Post by Vlad Matei »

Din teorema Wilson avem ca \( (p-1)!\equiv -1 (mod \, p) \). Acum cu observatia ca \( p-j \equiv -j (mod \, p) \) \( \displaystyle \forall j=1,...,\frac{p-1}{2} \) si o simpla inlocuire avem \( \displaystyle (-1)^{\frac{p-1}{2}} \left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv -1 (mod \, p) \) de unde \( \displaystyle \left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv 1(mod \,p) \). Acum stim ca \( \displaystyle \left(\frac{p-1}{2} \right) ! \) poate fi rest patratic sau nu si din relatia precedenta putem concluziona ca \( \displaystyle \left(\frac{p-1}{2} \right) ! \equiv \prod _{k=1}^{\frac{p-1}{2}} \left(\frac{k}{p}\right) (mod \, p) \) folosind simbolul Legendre ceea ce este echivalent cu \( \displaystyle \left(\frac{p-1}{2} \right) ! \equiv (-1)^{k} (mod\, p) \) unde \( k \) este de resturi nepatratice din multimea \( \{1,...,\frac{p-1}{2} \} \).
Acum sa evaluam \( \displaystyle \sum_{k=1}^{p-1} [\sqrt{kp}] \). Pentru \( i=1,..,p-1 \) exista \( \displaystyle \left[\frac{(i+1)^2}{p} \right] - \left[\frac{i^2}{p}\right] \) numere de forma \( \sqrt{pa} \) cu partea intreaga egala cu \( i \).
Prin urmare \( \displaystyle \sum_{k=1}^{p-1} [\sqrt{kp}] =\sum_{i=1}^{p-1} i\left(\left[\frac{(i+1)^2}{p} \right] - \left[\frac{i^2}{p}\right] \right)=\sum_{i=1}^{p-1} (i+1)\left[\frac{(i+1)^2}{p} \right]-\sum_{i=1}^{p-1}i\left[\frac{i^2}{p}\right] -\sum_{i=1}^{p-1}\left[\frac{(i+1)^2}{p}\right]=p^2-\sum_{i=1}^{p}\left[\frac{i^2}{p}\right] \).
Acum \( \displaystyle \sum_{i=1}^{p}\left[\frac{i^2}{p}\right] =\frac{\sum_{i=1}^{p} i^2}{p}- \sum_{i=1}^{p}\left\{\frac{i^2}{p}\right\}=\frac{p(p+1)(2p+1)}{3p}-\frac{2(r_{1}+...r_{2q+1})}{p}- \),unde \( r_{j} \),\( j=1,...,2q+1 \) sunt resturile patratice.
Acum sa demostram ca \( k \equiv r_{1}+....+r_{2q+1}+q+1 (mod \, 2) \). Fie \( a_{1},...,a_{k} \) neresturile patratice mai mici sau egale cu \( 2q+1 \). Din faptul ca \( p \equiv 3(mod \, 4) \) avem ca \( p-a_{1},..,p-a_{k} \) sunt resturile patratice mai mari ca \( 2q+1 \). Asadar \( r_{1}+....+r_{2q+1}=r_{1}+...+r_{j}+pk-a_{1}+...a_{k}=1+...+(2q+1)+pk-2(a_{1}+...a_{k}) =2q^2+3q+1+pk-2(a_{1}+...+a_{k}) \), unde \( r_{1},..,r_{j} \) resturile patratice mai mici sau egale cu \( 2q+1 \). O simpla analiza modulo 2 ne da claimeul de la inceput.
Last edited by Vlad Matei on Fri Jan 04, 2008 8:44 pm, edited 1 time in total.
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Post by Vlad Matei »

La 3 nu merge si nici 43.
Last edited by Vlad Matei on Fri Jan 04, 2008 8:56 pm, edited 3 times in total.
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Post by Vlad Matei »

Cred ca e vorba de \( p \equiv 7 (mod \, 8 ) \).
Post Reply

Return to “Teoria Numerelor”