Fie \( a, b, c > 0 \) cu \( a+b+c=1 \). Sa se arate ca:
1) \( \sum \frac{\sqrt{a+bc}}{\sqrt{bc} + \sqrt{a+bc}} \ge 2 \).
2) \( \sum \frac{\sqrt{a+bc}}{\sqrt{a} + \sqrt{a+bc}} \ge \frac{6}{2+\sqrt{3}} \).
3) \( \sum \frac{\sqrt{a+bc}}{\sqrt{a} + \sqrt{bc}} \ge \frac{6}{1+\sqrt{3}} \).
Topicul exista si pe mathlinks. Poate aici lumea are mai multe idei
Last edited by Filip Chindea on Sat May 10, 2008 10:26 pm, edited 5 times in total.
Life is complex: it has real and imaginary components.