Expresii luand numai valori prime

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Expresii luand numai valori prime

Post by Filip Chindea »

Fie \( f \in \mathbb{Z}[X] \) pentru care oricare ar fi \( n \in \mathbb{Z} \), \( |\tilde{f}(n)| \) este prim. Aratati ca \( f \) este constant.
Life is complex: it has real and imaginary components.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Solutie. Notam \( p = |\tilde{f}(1)| \). Avem ca \( m \equiv 1 \pmod{p} \) implica \( \tilde{f}(m) \equiv \tilde{f}(1) \equiv 0 \pmod{p} \), deci \( \tilde{f}(m) = \pm p \). In particular, exista un semn pentru care avem o infinitate de \( m \) satisfacând aceasta egalitate. Astfel ori \( f(m) - p \), ori \( f(m) + p \) are o infinitate de radacini, deci este identic nul, de unde \( f \equiv \pm p \), ceea ce trebuia aratat.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a X-a”