Aratati ca daca seria \( \sum_{n=1}^{\infty}a_{n} \) este convergenta, atunci si seria \( \sum_{n=1}^{\infty}a_{n}^{\frac{n}{n+1}} \) este convergenta.
Putnam 1988
Serie convergenta cu exponentul la limita 1
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Serie convergenta cu exponentul la limita 1
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Octav Ganea
- Euclid
- Posts: 15
- Joined: Mon Oct 01, 2007 9:12 pm
Sol 1: Din medii avem \( \sqrt[n+1]{a_n^n} \leq \frac{(n-1)\cdot a_n + 2\cdot \sqrt{a_n}}{n+1} \leq a_n+a_n + \frac{1}{(n+1)^2} \).
Sol 2: Daca \( a_n \geq \frac {1}{2^{n+1}} \) atunci \( \sqrt[n+1]{a_n^n} \leq \frac{1}{2^n} \) , daca nu atunci \( \frac{a_n}{\sqrt[n]{a_n}} \leq 2\cdot a_n \); astfel seria mare se imparte in doua subserii convergente fiecare.
Sol 2: Daca \( a_n \geq \frac {1}{2^{n+1}} \) atunci \( \sqrt[n+1]{a_n^n} \leq \frac{1}{2^n} \) , daca nu atunci \( \frac{a_n}{\sqrt[n]{a_n}} \leq 2\cdot a_n \); astfel seria mare se imparte in doua subserii convergente fiecare.