Demonstrati ca in orice triunghi ascutitunghic exista relatiile:
\( \min(h_a,h_b,h_c) \leq R+r \leq \max(h_a,h_b,h_c). \)
Inegalitate geometrica
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Stim ca \( R+r=OA_1+OB_1+OC_1 \), unde \( A_1,\ B_1,\ C_1 \) sunt proiectiile lui \( O \) pe laturi.
Avem \( OA_1=\frac{h_aS_{BOC}}{S} \) si analoagele.
\( R+r=OA_1+OB_1+OC_1=\frac{h_aS_{BOC}+h_bS_{AOC}+h_cS_{BOA}}{S}\leq \)
\( \leq \frac{\max(h_a,\ h_a,\ h_a) S}{S}=\max(h_a,\ h_b,\ h_c) \), dar in acelasi timp
\( R+r=OA_1+OB_1+OC_1=\frac{h_aS_{BOC}+h_bS_{AOC}+h_cS_{BOA}}{S}\geq \)
\( \geq \frac{\min(h_a,\ h_b,\ h_c)S}{S}=\min(h_a,\ h_b,\ h_c) \).
Avem \( OA_1=\frac{h_aS_{BOC}}{S} \) si analoagele.
\( R+r=OA_1+OB_1+OC_1=\frac{h_aS_{BOC}+h_bS_{AOC}+h_cS_{BOA}}{S}\leq \)
\( \leq \frac{\max(h_a,\ h_a,\ h_a) S}{S}=\max(h_a,\ h_b,\ h_c) \), dar in acelasi timp
\( R+r=OA_1+OB_1+OC_1=\frac{h_aS_{BOC}+h_bS_{AOC}+h_cS_{BOA}}{S}\geq \)
\( \geq \frac{\min(h_a,\ h_b,\ h_c)S}{S}=\min(h_a,\ h_b,\ h_c) \).
n-ar fi rau sa fie bine 