Sir convergent plus o conditie, atunci limita sa este 0

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Sir convergent plus o conditie, atunci limita sa este 0

Post by Cezar Lupu »

Fie \( (x_{n})_{n\geq 1} \) un sir convergent de numere reale astfel incat sa existe

\( \lim_{n\to\infty}n\left(\frac{x_{n}}{x_{n-1}}-1\right)\in\mathbb{R}^{*} \).

Sa se arate ca \( \lim_{n\to\infty}x_{n}=0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Re: sir convergent atunci limita sa este egala cu 0

Post by Bogdan Cebere »

Cezar Lupu wrote:Fie \( (x_{n})_{n\geq 1} \) un sir convergent de numere reale astfel incat sa existe

\( \lim_{n\to\infty}n\left(\frac{x_{n}}{x_{n-1}}-1\right)\in\mathbb{R}^{*} \).

Sa se arate ca \( \lim_{n\to\infty}x_{n}=0 \).
Cum exista \( \lim_{n\to\infty}n\left(\frac{x_{n}}{x_{n-1}}-1\right)\in\mathbb{R}^{*} \), rezulta ca exista un M astfel incat \( n\left(\frac{x_{n}}{x_{n-1}}-1\right)<M \), adica \( \frac{x_{n}}{x_{n-1}}<\frac{M}{n}+1 \).
Trecand inegalitatea la limita avem ca \( \lim_{n\to\infty}\left(\frac{x_{n}}{x_{n-1}}\right)<1 \), deci \( \lim_{n\to\infty}{x_{n}}=0 \).
Post Reply

Return to “Analiza matematica”