Morfism definit pe grupul aditiv al nr. rationale

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Tudorel Lupu
Euclid
Posts: 15
Joined: Mon Oct 01, 2007 8:58 pm
Location: Constanta

Morfism definit pe grupul aditiv al nr. rationale

Post by Tudorel Lupu »

Fie \( (G, \cdot) \) un grup finit, iar \( (\mathbb{Q}, +) \) este grupul aditiv al numerelor rationale. Daca \( f: (\mathbb{Q}, +) \to (G,\cdot) \) este morfism de grupuri, atunci \( f(x)=e, \forall x\in\mathbb{Q} \), unde \( e \) este elementul neutru al grupului \( G \).

***, Olimpiada locala Constanta, 2008
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 11:05 pm, edited 1 time in total.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Deoarece f este morfism avem \( f(nr)=\left( f(r)\right)^n ,\forall r \in \mathbb{Q} ,\forall n \in \mathbb{N} \).

Fie \( n=|G| \).Astfel obitnem \( f(nr)=e ,\forall r\in\mathbb{Q} \) si \( n=|G| \).Deci \( f(x)=e , \forall x \in \mathbb{Q}_{n} \), unde \( \mathbb{Q}_{n} =\{ \frac{r}{n} | r \in \mathbb{Q}\} \).Din faptul ca \( \mathbb{Q}_n =\mathbb{Q} \), concluzia este evidenta.
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Algebra”