Echivalente cu arctangent

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Echivalente cu arctangent

Post by Filip Chindea »

Consideram numerele reale pozitive \( x, y, z \). Aratati ca:

a) \( \arctan(x) + \arctan(y) < \frac{\pi}{2} \) daca si numai daca \( xy < 1 \).

b) \( \arctan(x)+ \arctan(y) + \arctan(z) < \pi \) daca si numai daca \( xyz < x + y + z \).
Last edited by Filip Chindea on Wed Jan 30, 2008 8:44 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Cluj-Napoca
Contact:

Post by turcas »

a) \( \arctan(x) + \arctan(\frac{1}{x}) + \arctan(y) - \arctan(\frac{1}{x}) < \frac{\pi}{2} \Leftrightarrow \)

\( \arctan(y) < \arctan(\frac{1}{x}) \Leftrightarrow xy < 1 \).

Enuntul corect pentru punctul b) este
\( \arctan(x) + \arctan(y) + \arctan(z) < \pi \).

Inegalitatea este echivalenta cu

\( \arctan(z) < \arctan(\frac{1}{x}) + \arctan(\frac{1}{y}) \Longleftrightarrow \)

\( \arctan(z) + \arctan(-\frac{1}{y}) < \arctan(\frac{1}{x}) \).

Atunci, cunoastem formula

Pentru \( xy < 1 \) avem \( \arctan(x) + \arctan(y) = \arctan(\frac{x+y}{1-xy}) \) .

In cazul nostru \( z(-\frac{1}{y}) < 1 \). Inegalitatea de dovedit ramane:

\( \arctan(\frac{zy-1}{y+z}) < \arctan{\frac{1}{x}} \).

Mai exact, \( \frac{zy-1}{y+z} < \frac{1}{x} \).

Daca \( zy - 1 < 0 \) inegalitatea este evidenta, in caz contrar rezulta exact\( xyz < x + y + z \).
Post Reply

Return to “Clasa a X-a”