Fie \( A\in M_{n}(\mathbb{Z}) \). Sa se arate ca \( \det(A^4+I_{n})\neq 13 \).
Marius Cavachi
det(A^4+I_n) diferit de 13
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
det(A^4+I_n) diferit de 13
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Solutie.
Vom utiliza descompunerea \( x^4+1=(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1) \). Astfel
\( \det(A^4+I_{n})=\det(A^2+\sqrt{2}A+I_{n})\det(A^2-\sqrt{2}A+I_{n}) \).
Acum, daca luam matricea \( B=(a_{ij}+\sqrt{2}b_{ij})_{1\leq i, j\leq n} \) si matricea conjugata \( \overline{B} =(a_{ij}-\sqrt{2}b_{ij})_{1\leq i, j\leq n} \), atunci folosind proprietatile conjugatei vom avea ca \( \det(A^2+\sqrt{2}A+I_{n}) \) va fi de forma \( a+b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \), iar \( \det(A^2-\sqrt{2}A+I_{n}) \) va fi de forma \( a-b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \).
Astfel, problema se reduce la a arata ca ecuatia \( a^2-2b^2=13 \) nu are solutii in \( \mathbb{Z} \). Acest lucru nu se arata foarte greu. Este clar ca \( a \) este impar, iar patratul unui numar impar este \( M_{8}+1 \). Acum luam doua cazuri:
i) daca \( b \) este par, atunci \( 2b^2 \) este \( M_{8} \), de unde vom avea ca \( M_{8}+1+M_{8}=13=M_{8}+5 \), fals.
ii) daca \( b \) este impar, atunci \( M_{8}+1-2(M_{8}+1)=13 \), de unde vom obtine contradictia \( M_{8}-1=M_{8}+5 \). \( \qed \)
Vom utiliza descompunerea \( x^4+1=(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1) \). Astfel
\( \det(A^4+I_{n})=\det(A^2+\sqrt{2}A+I_{n})\det(A^2-\sqrt{2}A+I_{n}) \).
Acum, daca luam matricea \( B=(a_{ij}+\sqrt{2}b_{ij})_{1\leq i, j\leq n} \) si matricea conjugata \( \overline{B} =(a_{ij}-\sqrt{2}b_{ij})_{1\leq i, j\leq n} \), atunci folosind proprietatile conjugatei vom avea ca \( \det(A^2+\sqrt{2}A+I_{n}) \) va fi de forma \( a+b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \), iar \( \det(A^2-\sqrt{2}A+I_{n}) \) va fi de forma \( a-b\sqrt{2} \) cu \( a, b\in\mathbb{Z} \).
Astfel, problema se reduce la a arata ca ecuatia \( a^2-2b^2=13 \) nu are solutii in \( \mathbb{Z} \). Acest lucru nu se arata foarte greu. Este clar ca \( a \) este impar, iar patratul unui numar impar este \( M_{8}+1 \). Acum luam doua cazuri:
i) daca \( b \) este par, atunci \( 2b^2 \) este \( M_{8} \), de unde vom avea ca \( M_{8}+1+M_{8}=13=M_{8}+5 \), fals.
ii) daca \( b \) este impar, atunci \( M_{8}+1-2(M_{8}+1)=13 \), de unde vom obtine contradictia \( M_{8}-1=M_{8}+5 \). \( \qed \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Ba se arata foarte usor, dupa cum ai dovedit chiar tu!Cezar Lupu wrote:Astfel, problema se reduce la a arata ca ecuatia \( a^2-2b^2=13 \) nu are solutii in \( \mathbb{Z} \). Acest lucru nu se arata foarte greu.
Alt argument: trecem ecuatia in \( \mathbb{Z}_{13} \) (sau modulo 13, daca se prefera) si ramane sa aratam ca ecuatia \( x^2=2 \) nu are solutii in \( \mathbb{Z}_{13} \) (sau ca 2 nu e rest patratic modulo 13), ceea ce este trivial.