Sa se demonstreze ca in orice triunghi \( ABC \) are loc inegalitatea:
\( \sum_{cyc}\frac{1}{\sin^2\frac{A}{2}\cos\frac{A}{2}}\geq 4\sqrt{3}\cdot\frac{R}{r} \).
Cezar Lupu
Inegalitate geometrica in sin si cos de unghiuri pe jumatate
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitate geometrica in sin si cos de unghiuri pe jumatate
Last edited by Cezar Lupu on Mon Aug 25, 2008 4:56 pm, edited 1 time in total.
Hi Cezar my friend, it is along time I haven't met you. Here is my solution:
Let \( I \) be incenter
use \( 2\sin\frac{A}{2}\cos\frac{A}{2}=\sin A=\frac{a}{2R},\sin\frac{A}{2}=\frac{r}{IA} \), it is equivalent to
\( \sum\frac{4RIA}{ra}\ge 4\sqrt{3}\frac{R}{r}\Leftrightarrow \sum\frac{IA}{a}\ge\sqrt{3}
\)
Which is true by \( \sum \frac{PA}{a}\ge\sqrt{3} \) forall \( P \) in the plane.

Let \( I \) be incenter
use \( 2\sin\frac{A}{2}\cos\frac{A}{2}=\sin A=\frac{a}{2R},\sin\frac{A}{2}=\frac{r}{IA} \), it is equivalent to
\( \sum\frac{4RIA}{ra}\ge 4\sqrt{3}\frac{R}{r}\Leftrightarrow \sum\frac{IA}{a}\ge\sqrt{3}
\)
Which is true by \( \sum \frac{PA}{a}\ge\sqrt{3} \) forall \( P \) in the plane.