Sa se calculeze
\( \lim_{n\to\infty}\left(1+\frac{1}{1^{2}\right)\left(1+\frac{1}{2^{2}}\right)\ldots\left(1+\frac{1}{n^{2}}\right) \).
Ce am demonstrat pana acum (folosind mijloace elementare) este ca limita sirului este cuprinsa intre \( 1+\frac{\pi^2}{6} \) si \( e^{\frac{\pi^2}{6}} \).
Limita sirului \prod(1+1/k^2)
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Limita sirului \prod(1+1/k^2)
Last edited by Cezar Lupu on Sat Feb 16, 2008 12:25 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact: