Limita sirului \prod(1+1/k^2)

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Limita sirului \prod(1+1/k^2)

Post by Cezar Lupu »

Sa se calculeze

\( \lim_{n\to\infty}\left(1+\frac{1}{1^{2}\right)\left(1+\frac{1}{2^{2}}\right)\ldots\left(1+\frac{1}{n^{2}}\right) \).

Ce am demonstrat pana acum (folosind mijloace elementare) este ca limita sirului este cuprinsa intre \( 1+\frac{\pi^2}{6} \) si \( e^{\frac{\pi^2}{6}} \).
Last edited by Cezar Lupu on Sat Feb 16, 2008 12:25 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Limita este \( \sinh(\pi)/ \pi \). Rezulta din scrierea ca produs infinit pentru \( \sin \) sau \( \sinh \).
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Mai precis are loc formula:

\( \frac{\sinh\pi x}{\pi x}=\prod_{n=1}^{\infty}\left(1+\frac{x^2}{n^2}\right) \) pentru \( x\in (0, 1] \). Limita de mai sus este \( \sinh(\pi)/ \pi \) si se obtine pentru \( x=1 \) asa cum a afirmat si aleph mai sus. :)
Post Reply

Return to “Analiza reala”