Sistem de ecuatii

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Sistem de ecuatii

Post by Virgil Nicula »

Sa se rezolve sistemul de ecuatii (peste \( \mathbb R \)): \( \left\{\begin{array}{c}
x^5+y^5=33\\\
x^3-y^3=7\end{array} \)
.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Daca \( y<0 \) avem \( x^5>33 \) de unde \( x>2 \) de unde \( x^3-y^3>8 \) si nu convine.
Deci \( y\geq 0 \) si cum \( x^3-y^3=7 \) rezulta ca si \( x>0 \)

Se observa ca \( (x,y)=(2,1) \) este solutie.

Daca \( x>2 \) atunci \( y^5=33-x^5<1 \)
si atunci \( x^3-y^3>2^3-1^3>7 \)

Daca \( x<2 \) atunci \( y^5=33-x^5>1 \)
si atunci \( x^3-y^3<2^3-1^3=7 \)

Asadar solutie unica \( (x,y)=(2,1) \)
Post Reply

Return to “Clasa a X-a”