Sa se calculeze
\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
Calcul de limita de integrala
Moderators: Mihai Berbec, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Calcul de limita de integrala
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Ciprian Oprisa
- Pitagora
- Posts: 55
- Joined: Tue Feb 19, 2008 8:01 pm
- Location: Lyon sau Cluj sau Baia de Cris
Folosim dezvoltarea in serie \( ln(1+x)=\sum\limits_{n\geq0}(-1)^n\frac{x^{n+1}}{n+1} \).
\( \Rightarrow \int\limits_0^n ln(1+e^{-x})=
\int\limits_0^n\sum\limits_{k\geq0}(-1)^k\frac{e^{-x(k+1)}}{k+1}= \)
\( =\sum\limits_{k\geq0}\frac{(-1)^k}{k+1}\int\limits_0^n e^{-x(k+1)}= \)
\( =\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}(e^{-n(k+1)}-1)= \)
\( =e^{-n}\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}e^{-nk}-\sum\limits_{k\geq0}\frac{(-1)^k}{(k+1)^2}= \)
\( =e^{-n}C+\frac{\pi^2}{12}\rightarrow\frac{\pi^2}{12} \)
\( \Rightarrow \int\limits_0^n ln(1+e^{-x})=
\int\limits_0^n\sum\limits_{k\geq0}(-1)^k\frac{e^{-x(k+1)}}{k+1}= \)
\( =\sum\limits_{k\geq0}\frac{(-1)^k}{k+1}\int\limits_0^n e^{-x(k+1)}= \)
\( =\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}(e^{-n(k+1)}-1)= \)
\( =e^{-n}\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}e^{-nk}-\sum\limits_{k\geq0}\frac{(-1)^k}{(k+1)^2}= \)
\( =e^{-n}C+\frac{\pi^2}{12}\rightarrow\frac{\pi^2}{12} \)
Un lucru este ceea ce este, nu ceea ce pare a fi.
Re: Calcul de limita de integrala
A double integration trick yields the answer too.Cezar Lupu wrote:Sa se calculeze
\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Can you be more specific? My approach is the same as Ciprian's above.K!! wrote:A double integration trick yields the answer too.Cezar Lupu wrote:Sa se calculeze
\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.