Limite de siruri

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Limite de siruri

Post by Bogdan Cebere »

Sa se determine limitele sirurilor \( (a_{n}),(b_{n}),(c_{n}),(d_{n}) \) definite astfel
\( \left( \begin{array}{cc} {a_n} & {b_n} \\ {c_n} & {d_n} \end{array} \right)= \left( \begin{array}{cc} {1} & {\frac{\alpha}{n}} \\ {-\frac{\alpha}{n}} & {1} \end{array} \right)^n (a \in R). \)
User avatar
Ciprian Oprisa
Pitagora
Posts: 55
Joined: Tue Feb 19, 2008 8:01 pm
Location: Lyon sau Cluj sau Baia de Cris

Post by Ciprian Oprisa »

Se poate arata usor ca a inmulti doua matrici de forma \( \left(
\begin{array}{cc}
a & b \\
-b & a
\end{array} \right) \)
este echivalent cu a inmulti doua numere complexe de forma \( a+bi \).
Deci calculam \( \lim\limits_{n\rightarrow\infty}(1+\frac{i\alpha}{n})^n=\lim\limits_{n\rightarrow\infty}(1+\frac{i\alpha}{n})^{\frac{n}{i\alpha}i\alpha}=e^{i\alpha}=\cos\alpha+i\sin\alpha \)
Obtinem \( \lim\limits_{n\rightarrow\infty}\left(
\begin{array}{cc}
1 & \frac{\alpha}{n} \\
-\frac{\alpha}{n} & 1
\end{array} \right)^n=
\left(
\begin{array}{cc}
\cos\alpha & sin\alpha \\
-sin\alpha & cos\alpha
\end{array} \right) \)
Un lucru este ceea ce este, nu ceea ce pare a fi.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Rezultatul este corect, dar în legătură cu modul în care s-au manevrat numerele complexe, ce părere aveţi de egalităţile:
\( e=e^{\frac{2\pi i}{2\pi i}}=\left( e^{2\pi i}\right)^{\frac{1}{2\pi i}}=1^{\frac{1}{2\pi i}}=1? \)
User avatar
Ciprian Oprisa
Pitagora
Posts: 55
Joined: Tue Feb 19, 2008 8:01 pm
Location: Lyon sau Cluj sau Baia de Cris

Post by Ciprian Oprisa »

Ok, am scos factor comun r, am aratat k \( r^n\rightarrow1 \), am calculat si limitele din acei arccos si arcsin, mi-au dat \( \alpha \), dupa ce am substituit \( \frac{1}{n} \) cu x si am aplicat l'Hopital, dar n-am de gand sa scriu toate astea in latex k mi-e lene :P
Un lucru este ceea ce este, nu ceea ce pare a fi.
Post Reply

Return to “Analiza matematica”