Fie \( f:\mathbb{R}\to\mathbb{R} \) o functie continua astfel incat
\( f(x)\leq f\left(x+\frac{1}{n}\right),\forall x\in\mathbb{R}, n\in\mathbb{N} \).
Aratati ca \( f \) este crescatoare.
f(x)<=f(x+1/n) pentru orice x real si n natural
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
f(x)<=f(x+1/n) pentru orice x real si n natural
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Bogdan Posa
- Pitagora
- Posts: 77
- Joined: Fri Dec 14, 2007 3:47 pm
- Location: Motru , Gorj , Romania
- Contact:
Fie \( x \geq x_{0} \) \( , a_{n} =\frac {1}{n} \)
\( x = x_{0}+ \frac {x-x_{0}}{a_{n}} a_{n} \)
\( x = x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} \)
\( f(x)=f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} ) \geq f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} ) \)
Trecand la limita in ultima inegalitate obtinem ca \( f(x) \geq f(x_{0}) \)
\( x = x_{0}+ \frac {x-x_{0}}{a_{n}} a_{n} \)
\( x = x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} \)
\( f(x)=f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} ) \geq f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} ) \)
Trecand la limita in ultima inegalitate obtinem ca \( f(x) \geq f(x_{0}) \)
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Solutie.(la nivel de clasa 12-a
)
Constrium sirul de functii derivabile \( f_{n}:\mathbb{R}\to\mathbb{R} \) definit prin
\( f_{n}(x)=n\int_{x}^{x+\frac{1}{n}}f(t)dt=n\left(\int_0^{x+\frac{1}{n}}f(t)dt-\int_0^xf(t)dt\right), \forall x\in\mathbb{R}, \forall n\in\mathbb{N}^{*} \). Derivand, vom avea
\( f\prime_{n}(x)=n(f\left(x+\frac{1}{n}\right)-f(x))\geq 0, \forall x\in\mathbb{R}, n\in\mathbb{N}^{*} \).
Astfel, functia \( f_{n} \) este crescatoare. Pe de alta parte, avem ca
\( \lim_{n\to\infty}f_{n}(x)=f(x) \), iar cum functia \( f_{n} \) este crescatoare rezulta ca si \( f \) este crescatoare. \( \qed \)
Constrium sirul de functii derivabile \( f_{n}:\mathbb{R}\to\mathbb{R} \) definit prin
\( f_{n}(x)=n\int_{x}^{x+\frac{1}{n}}f(t)dt=n\left(\int_0^{x+\frac{1}{n}}f(t)dt-\int_0^xf(t)dt\right), \forall x\in\mathbb{R}, \forall n\in\mathbb{N}^{*} \). Derivand, vom avea
\( f\prime_{n}(x)=n(f\left(x+\frac{1}{n}\right)-f(x))\geq 0, \forall x\in\mathbb{R}, n\in\mathbb{N}^{*} \).
Astfel, functia \( f_{n} \) este crescatoare. Pe de alta parte, avem ca
\( \lim_{n\to\infty}f_{n}(x)=f(x) \), iar cum functia \( f_{n} \) este crescatoare rezulta ca si \( f \) este crescatoare. \( \qed \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Bogdan Posa
- Pitagora
- Posts: 77
- Joined: Fri Dec 14, 2007 3:47 pm
- Location: Motru , Gorj , Romania
- Contact: