Problema de comparare a puterilor

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Problema de comparare a puterilor

Post by Claudiu Mindrila »

Daca \( a=26^{62} \) si \( b=85^{58} \) demontrati ca raportul \( \frac{a}{b} \) nu poate reprezenta un numar natural.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \frac{a}{b} < \frac{1}{2^{38}} < 1 \) :D
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Problema de comparare a puterilor

Post by Virgil Nicula »

mndclaudiu wrote:Daca \( a=26^{62} \) si \( b=85^{58} \) demontrati ca raportul \( \frac{a}{b} \) nu poate reprezenta un numar natural.
Foarte frumos, Faust ! \( \frac ab=\frac {26^{62}}{85^{58}}= \) \( \left(\frac 45\right)^{58}\cdot\left(\frac {13}{17}\right)^{58}\cdot\left(\frac {13}{16}\right)^4\cdot\frac {1}{2^{38}}<\frac {1}{2^{38}}<1 \) , adica mai tare, \( 2^{38}\ \cdot\ \frac ab\ <\ 1\ ! \)

Altfel. \( \frac {26^{62}}{85^{58}}\ <\ \left(\frac {26^{6}}{85^{5}}\right)^{11} \) . Insa \( \frac {26^{6}}{85^{5}}= \) \( \frac {2^6\cdot 13^6}{5^5\cdot 17^5}=\left(\frac 45\right)^3\cdot\left(\frac {13}{17}\right)^5\cdot \frac {13}{5^2}<1 \) .
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Frumos

Post by Claudiu Mindrila »

Foarte frumoasa solutia domnului Virgil Nicula. Faust, ideea ta e buna dar vroiam ceva mai concret...
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Multumesc, Claudiu ! Mi-a facut placere sa ma "joc".

In ceea ce-l priveste pe Faust, dupa parerea mea nu ai dreptate.

Faust ti-a spus destul de concret (cam "tare" insa), adica

\( \frac ab<\frac {1}{2^{38}} \) inseamna ca ti-a ramas sa arati doar ca \( \frac ab\cdot 2^{38}\ <\ 1\ ! \)

Mie mi-a placut ce a obtinut, de aceea am si postat o demonstratie.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Imi pare rau ca nu am scris solutia completa, dar sunt incepator in ceea ce priveste scrisul in \( Latex \). Pe viitor voi incerca sa fiu mai explicit :) .
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VI-a”