Functie continua pentru care exista limita de integrala

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Functie continua pentru care exista limita de integrala

Post by Cezar Lupu »

Fie \( f:[0,\infty)\to\mathbb{R} \) o functie continua astfel incat

\( \lim_{x\to\infty}\left(f(x)+\int_0^xf(t)dt\right) \) exista.

Aratati ca \( \lim_{x\to\infty}f(x)=0 \).
Last edited by Cezar Lupu on Sat Mar 08, 2008 10:41 pm, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
o.m.
Euclid
Posts: 32
Joined: Sun Apr 27, 2008 2:16 pm

Post by o.m. »

\( F(x)=\int_{0}^{x}f(t)dt \)

\( F^{\prime}(x)+F(x)=g(x) \) tends to \( L\in R \)

Solving the differential equation
\( F(x)=e^{-x}\int_{0}^{x}e^{t}g(t)dt+Ae^{-x} \)
with A fixed real, we get

\( f(x)=F^{\prime}(x)=-\frac{\int_{0}^{x}e^{t}g(t)dt}{e^{x}}+g(x)-Ae^{-x} \)

Now if \( g \) tends to \( L \), then \( \frac{\int_{0}^{x}e^{t}g(t)dt}{e^{x}} \) tends also to \( L \).

Finally \( f \) tends to \( 0 \).
Post Reply

Return to “Analiza matematica”