Inegalitate conditionata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Inegalitate conditionata

Post by Radu Titiu »

Daca Fie a,b,c numere reale strict pozitive a.i. \( a^3+b^3+3c=5 \). Aratati ca:
\( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
A mathematician is a machine for turning coffee into theorems.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

O idee, ceva... :D
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Re: Inegalitate conditionata

Post by Radu Titiu »

Svejk wrote:Daca Fie a,b,c numere reale strict pozitive a.i. \( a^3+b^3+3c=5 \). Aratati ca:
\( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
Din inegalitatea Cauchy avem \( \sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\leq \sqrt{2(a+b+c)\left( \frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\right)} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \Leftrightarrow \)
\( a+b+c \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)(*)

Dar din conditia initiala avem :\( 9=(a^3+2)+(b^3+2)+3c\geq 3(a+b+c) \)
Deci \( a+b+c \leq 3 \)
Mai mult din inegalitatea Cauchy avem de asemenea :\( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\geq 3 \)
Asadar relatia (*) este adevarata deoarece \( a+b+c \leq 3\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Clasa a IX-a”