Determinanti pozitivi
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Determinanti pozitivi
Fie \( A\in M_{n}(\mathbb{R}) \) o matrice astfel incat \( A^{2}=O_{n} \). Sa se arate ca \( \det(A+I_{n})\geq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
Ideea mea este de a arata ca determinantul e 1 (fara a folosi notiunea de polinom minimal).
\( A^2=O\Rightarrow \) 0 este unica valoarea proprie a lui A. Deci polinomul caracteristic este det\( (A-XI_n)=(-1)^nX^n \). Deci det\( (A+I_n)=(-1)^{2n}=1 \).
\( A^2=O\Rightarrow \) 0 este unica valoarea proprie a lui A. Deci polinomul caracteristic este det\( (A-XI_n)=(-1)^nX^n \). Deci det\( (A+I_n)=(-1)^{2n}=1 \).
Last edited by Alin Galatan on Sat Oct 06, 2007 12:12 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact: