Un sir mai dificil

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Un sir mai dificil

Post by Marius Dragoi »

Pentru orice numar natural \( n \geq 2 \) notam \( a_n = 2+ {\frac {1}{\sqrt 2}} + {\frac {1}{\sqrt 3}} +...+ {\frac {1}{\sqrt n}} \). Demonstrati ca \( 1+ {\frac{a_2}{2}} +{\frac {a_3}{3}} +...+ {\frac {a_n}{n} < a_{n-1} \).

Shortlist ONM 2004
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se arata prin inductie dupa n ca \( 1+\frac{a_2}{2}+\frac{a_3}{3}+...+\frac{a_n}{n}>a_{n-1} \)
Post Reply

Return to “Clasa a IX-a”