Fie A un inel astfel ca pentru orice \( x\in A \) una din urmatoarele afirmatii este adevarata:
a) \( x^2=x \)
b) \( x^2=x+1 \)
c) \( x=x^2+1 \)
Demonstrati ca inelul A este comutativ.
C. Mortici
Conditii de comutativitate in inel
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
a) \( x^{2}=x ,\forall x \in A \), deci si pt \( x=-1 \Rightarrow 1+1=0 \Rightarrow x+x=0 \forall x \in A (*) \). Dar \( (x+y)^{2}=x+y, \forall x,y \in A \Rightarrow x^{2}+xy+yx+y^{2}=x+y \Rightarrow xy+yx=0 \Rightarrow yx=-xy \). Dar din \( (*) \) avem ca \( xy=-xy \Rightarrow xy=yx \), deci inelul \( A \) este comutativ.
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Daca stii faptul ca daca \( x^2-x \in Z(A),\ \forall x \in A \), atunci A este inel comutativ e simplu.
Pentru fiecare dintre cele trei cazuri avem \( x^2-x \in \{0,1,-1\}\subset Z(A) \). Deci A este comutativ.
Pentru fiecare dintre cele trei cazuri avem \( x^2-x \in \{0,1,-1\}\subset Z(A) \). Deci A este comutativ.
Last edited by Beniamin Bogosel on Mon Mar 17, 2008 7:25 pm, edited 4 times in total.